The transcriptional transactivator of simian foamy virus 1 binds to a DNA target element in the viral internal promoter.
نویسندگان
چکیده
The transcriptional transactivator (Tas) of simian foamy virus type 1 strongly augments gene expression directed by both the promoter in the viral long terminal repeat and the newly discovered internal promoter located within the env gene. A region of 121 bp, located immediately 5' to the TATA box in the internal promoter, is required for transactivation by Tas. The present study aimed to identify the precise Tas-responsive target(s) in this region and to determine the role of Tas in transcriptional regulation. By analysis of both clustered-site mutations and hybrid promoters in transient expression assays in murine and simian cells, two separate sequence elements within this 121-bp region were shown to be Tas-dependent transcriptional enhancers. These targets, each < 30 bp in length and displaying no apparent sequence homology one to the other, are designated the promoter-proximal and promoter-distal elements. By means of the gel electrophoresis mobility-shift assays, using purified glutathione S-transferase-Tas fusion protein expressed in Escherichia coli, the target proximal to the TATA box exhibited strong binding to glutathione S-transferase-Tas, whereas the distal element appears not to bind. In addition, footprint analysis revealed that 26 bp in the promoter proximal element was protected by glutathione S-transferase-Tas from DNase I. We propose a model for transactivation of the simian foamy virus type 1 internal promoter in which Tas interacts directly with the proximal target element positioned immediately 5' to the TATA box. In this model, Tas attached to this element is presumed to interact with a component(s) of the cellular RNA polymerase II initiation complex and thereby enhance transcription directed by the viral internal promoter.
منابع مشابه
Identification and functional characterization of a high-affinity Bel-1 DNA binding site located in the human foamy virus internal promoter.
The transcription of genes carried by primate foamy viruses is dependent on two distinct promoter elements. These are the long terminal repeat (LTR) promoter, which regulates expression of the viral structural proteins, and a second internal promoter, located towards the 3' end of the env gene, that directs expression of the viral auxiliary proteins. One of these auxiliary proteins is a potent ...
متن کاملFeline foamy virus Tas protein is a DNA-binding transactivator.
Foamy viruses (FVs) harbour a transcriptional transactivator (Tas) and two Tas-responsive promoter regions, one in the 5' long terminal repeat (LTR) and the other an internal promoter (IP) in the envelope gene. To analyse the mechanism of transactivation of the FVs, the specificity of feline FV (FFV) Tas protein, which is more distantly related to the respective proteins of non-human primate or...
متن کاملcis-acting regulatory regions in the long terminal repeat of simian foamy virus type 1.
Simian foamy virus type 1 (SFV-1), a member of the Spumavirinae subfamily of retroviruses, encodes a transcriptional transactivator (taf) that strongly augments gene expression directed by the viral long terminal repeat (LTR) (A. Mergia, K. E. S. Shaw, E. Pratt-Lowe, P. A. Barry, and P. A. Luciw, J. Virol. 65:2903-2909, 1991). This report describes cis-acting regulatory elements in the LTR that...
متن کاملFunctional domains of the simian foamy virus type 1 transcriptional transactivator (Taf).
The genome of simian foamy virus type 1 encodes a transcriptional transactivator (Taf) that dramatically elevates gene expression directed by the viral long terminal repeat. In this report, we describe the functional domains of simian foamy virus type 1 Taf. Several taf mutants and fusion proteins of Taf and the DNA-binding domain of the Saccharomyces cerevisiae transcriptional transactivator G...
متن کاملIdentification and functional characterization of BTas transactivator as a DNA-binding protein.
The genome of bovine foamy virus (BFV) encodes a transcriptional transactivator, namely BTas, that remarkably enhances gene expression by binding to the viral long-terminal repeat promoter (LTR) and internal promoter (IP). In this report, we characterized the functional domains of BFV BTas. BTas contains two major functional domains: the N-terminal DNA-binding domain (residues 1-133) and the C-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 93 1 شماره
صفحات -
تاریخ انتشار 1996